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ABSTRACT

There are good reasons for using sequential methods in some statistical

decision problems, but a stopping rule that is helpful for deciding whether

0 > 0 or 0 < 0 may not be so good for estimating 6. This paper considers the

construction of confidence bounds on a real parameter and investigates the '-

relation between the ordering of boundary points that are accessible under the

stopping rule and the natural ordering of the parameter space.
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1. INTRODUCTON

There are many ways of defining an ordering of probability distributions

so that large values of the parameter which labels the distributions correspond -
to large values of the random variables themselves. For example, Lehmann

(1955) gives a comparison of several definitions and an application to the

sequential probe-hility ratio test. We shall be minly concerned with

stochastic ordering, which is well-known In applied probability, and the

stronger relation of ordering by monotone likelihood ratios (m.l.r.). The

latter is familiar in the theory of hypothesis testing, where It leads to

uniformly most powerful one-sided tests for fixed samples from a distribution

in a 1-dimensional exponential family. A closely related application of m.l.r.

is the construction of uniformly most accurate confidence bounds on the unknown

parameter: see Lehmann's book (1959). pages 78-80. The aim of this paper is to

investigate confidence bounds determined after a random stopping time. As we

shall see, the above optimality property of one-sided confidence bounds is

usually lost when we allow sequential sampling. However, for a large class of

stopping rules, we can define an ordering of the boundary points so that the

distributions of stopping points are stochastically ordered with respect to the

parameter. In general, this weaker ordering relation seems to be the best that

can be obtained, which underlines the need for caution when interpreting

confidence bounds and intervals based on sequential data.

In a recent book, Siegmund (1985) illustrates the advantages and

disadvantages of sequential methods. For hypothesis testing, we can achieve a

significance level and power comparable to fixed sample procedures with a

substantial reduction in expected sample size. On the other hand, sequential

sampling often leads to less accurate estimation. In the design of clinical

trials, estimation may be a secondary consideration: for ethical reasons, it isV
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important to reject an inferior treatment as soon as possible, rather than

using it on a larger sample of patients to improve the estimates of its

performance. Previous research has been mainly concerned with procedures for

comparing different treatments and stopping rules designed to control the error

probabilities of decisions about their relative merits. More recently,

Siegmund and others have turned to questions of estimation from sequences of

observations produced by various stopping rules. In particular, they have made

substantial progress in constructing confidence intervals, in spite of the

difficult probability calculations and delicate approximations often needed to

deal with curved stopping boundaries.

The construction of confidence intervals after a stopping time is based on

standard methods. Consider first a random variable Z whose distribution 9

depends on a real parameter 6 and write v(z.0) = PO(Z z). In general, a

lower confidence bound for 6 can be obtained by using the fact that

P6(ip(Z.9) a a) 2 1-a, (1) -.

for any fixed a. 0 a 9 1. Let O(z) = inf{6: v(z.e) 2 a). so that I

f(z.6) a => O(z) 6. It follows from this definition and (1) that

P6(_e(Z) 6) , Pe(,(Z.0) 2 a) I-a. (2)

Thus, O(z) is a lower confidence bound for 6. given an observed value z of the

random variable. Upper confidence bounds O(z) can be constructed similarly,

for the same confidence coefficient 1-a. and we then obtain confidence 6

intervals with coefficient l-2a from the inequality

PO(P(Z) 6 6(Z)) .1-PO(6(Z) > 6) - PO(6(Z) ( ).

This probability is at least 1-2a. because of (2) and a similar property of

O( Z). g

The above argument extends in a straightforward manner to more complicated

sample spaces where the data consists of stopped sequences of observations.

% s s % - % V.'.. % '% % %'.A'V- 's "
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Let x,.x2 .... be independent observations from the probability density

f(x:e) = exp(Ox - \(0)}. (3)

with respect to a a-finite measure p on the real line. This represents a

1-dimensional exponential family of distributions with mean +'(0) and variance

+"(0) > 0. The natural parameter space of the family is a real interval and we

n
suppose that the true value of 6 in this interval is unknown. Let Sn = I xi

1

for n 2 1 and note that any stopped sequence of observations (x l x2 .... Xn) is

represented by the sufficient statistic (n.s), where S n= s. Suppose that the

stopping time is defi.ied by splitting the (n,s) plane into continuation and

stopping regions. It is helpful to think of upper and lower stopping sets,

separated by the continuation region. Since +"(0) > 0. the mean +'(0) is

increasing in 6 and we can imagine that, roughly speaking, points (n,s) in the

upper stopping set favour higher values of 6. However, we need a more precise

ordering relation on the points of the stopping region before we can Justify

constructing confidence bounds on 6.

The idea is to order all the accessible boundary points (ns) in a

counter-clockwise sense around the continuation region, but this can be done in

several ways. The definition given in Section 4 of this paper has been used

previously by Siegmund (1978). in obtaining confidence intervals for a normal

mean, and also by Jennison and Turnbull (1983). for estimating a binomial

probability. The authors of the second paper considered a different ordering

of boundary points based on the ratio s/n. the maximum likelihood estimate of

the unknown probability, but this produced very similar results in the cases

they computed. Siegmund (1985) also mentions the ratio s/n as a possible basis

for ordering normal data.

In general, we must determine a function W(n.se) which represents the

probability of stopping the sequence of observations at a point "above" (n.s).

% % A%
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The function can then be used to find confidence bounds on 6 in the same way as

#p(z.0). It is important to note that the construction described earlier does

not depend explicitly on any relation between the parameter 6 and the ordering

of the sample space. In principle, any ordering of points (n.s) in the

stopping region can produce valid confidence bounds. However. it is possible

to ensure that the function *(n.s.0) is increasing in 6. This general property

does not seem to have been established previously, although it is obviously

useful in computing confidence bounds from the formula

6(n~s) = inf{6: %9(n~s,6) a). (4)

The rest of this paper Is organized as follows. The next section gives a

simple example which demonstrates the advantages and disadvantages of

sequential procedures. It also suggests an arbitrariness in the construction

of confidence bounds which is not easy to eliminate entirely. However. we can

distinguish between bounds that are formally valid and more sensible

constructions that are also related to the unknown parameter. Section 3 is

concerned with partial orderings of probability distributions. It contains a 1'

S,
brief description of and comparison between stochastic ordering and ordering by i

m.l.r. There is a new result about the most likely permutation of a number of

independent random variables from an ordered family of distributions. The I','
property that the most likely permutation corresponds to the ordering of the

family holds for m.l.r. but not, in general, for stochastic ordering: see

Proposition 4. The ordering of boundary points for the random walk (Sn . n 1)

is considered in Section 4 and it Is proved that. for a large class of stopping

times N. the distributions of the random point (N.SN) are stochastically

ordered with respect to 0. This means that the function *(n.s.6) is increasing ."

in 6. The final section of the paper gives another illustration, based on a

simple acceptance/rejection scheme for diffusion processes with unknown drift

parameters. It shows that the intuitive counter-clockwise ordering of random

,%
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stopping points with respect to the drift can be destroyed by conditioning on

rejection. The paper concludes with some tentative remarks about the design of

stopping rules.

2. EXAMPLE

Consider independent Bernoulli trials with success probability p and let

x = il, according as the i-th trial results in success or failure. i=1,2.....

Thus, we have an exponential family of distributions which can be expressed in

the form (3) by writing 6 = Mlog(p/q). -(0) = log(e +e- ), where q=l-p.

However, the usual notation for Bernoulli trials will be more convenient here.

Suppose that we must decide, after observing a number of trials, whether p >

or not. Various stopping ruies will be considered for the random walk {Sn},

n
S n- xi. In each case, the terminal decision at a point (n.s) with S = s will1 n

depend only on the sign of s : we conclude that p > % if s > 0, that p < % if

s < 0 and we choose either decision by tossing a coin if s = 0.

We now turn to the stopping rules. Rule 1 is to take 4 observations and

then reach a decision about p. according to the sign of S . Rule 2 is a I

sequential modification of it: we observe xI and x2 and stop if S2= ±2. but if

S2 0 we take another 4 observations. This modification can be used repeatedly

to produce a series of rules. Rule k is specified as follows: observe the

sequence {S 1 .S 2 .... } and stop as soon as S 2n- 2, but if S2n= 0 for

n = 1.2.....,k-l, take 4 more observations and stop at n = 2k+2. The limiting

form of these rules, with k = , can be regarded as a sequential probability p

ratio test. As we shall see, Rule a is an improvement on its predecessors both

with regard to expected sample size and with regard to error probability.

Let mk(p) denote the expected sample size for Rule k and let ak(p) be the

VI probability of reaching a terminal decision that p > . The corresponding

error probability is given by:

qV
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6

ek(p) = ak(p) o p (5)

ek(p) = 1-ak(p). p K 1.

We now prove that. for all p.

ml(P )  m2 (p) ... m0 (p), (6)

el(p) e2 (p) ... e(p). (7)

Proof. Clearly. ml(p) = 4 and m2 (p) = 2+2pqm,(p). It follows that

m2 (p) ml(p). with equality only if p = %. Then by considering S2 .

mk+,(p) = 2+2pqmk(p) and an inductive argument shows that mk+l(p) K mk(p) for

all k. As k -# -. mk(P)-+ mo(p)= 2(p2+q 2)- .

The proof of (7) is similar, but we need to use (5). Note that

2 2
al(p) = p (1+2q) and ak+l(p) = p +2pqak(P) for k=l.2,..... It is easy to show

by induction that ak+,(p) > ak(p) if 0 < p < % and ak+l(p) ( ak(p) if

%4 ( p ( 1. We also have ak(p) = p. whenever p = 0. % or 1, so the relations

(7) follow immediately from (5). In fact, explicit formulae for ak(p) can be

obtained and. in the limit, a,(p) = p 2(p2+q2 )-.

The inequalities (6) and (7) show that, so far as terminal decisions are

concerned, the performance of the stopping rules improves as k increases.

However. their relative merits for estimation are quite different. Consider

first the unbiased estimation of p. It turns out that there is just one

unbiased estimator pk' based on Rule k. In particular, pl= (S4+4)/8 and its

variance is pq/4. For k 2. pk= (S2+2)/4 is unbiased and this has variance

pq/2. Standard methods can be used to verify that Pk is the unique unbiased

estimator of p. but we shall omit the details. Thus. for Rules 2.3..... the

minimum variance unbiased estimator of p depends only on the first two

Bernoulli trials. From this point of view, Rule 1 is preferable.

Now consider confidence bounds on p. Instead of making a comparison of

different rules, we shall restrict attention to Rule 2. The stopping region

consists of 7 points: (2,-2). (6,-4), (6,-2), (6.0), (6,2), (6,4). (2,2), and

% %
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let us label these 1.2.....7 in counter-clockwise order., Their labels here are

related to p in the following sense. Let p(Jp) be the probability that the

random walk stops at a point whose label is at least J. Then %(J.p) is s
non-decreasing in p for J=1.2.....7. This is a consequence of the general

result which will be proved in Section 4. However, there are several possible

orderings of the 7 points with this property. For example, it is not difficult

to verify that it also holds if the labels (1.2.3,4.5,6.7) are replaced by

(1.3,2.4.6.5,7), respectively. Another ordering of the stopping region that is

plausible from a different point of view is obtained on replacing the original

labels by (2.1.3.4.5.7,6). It is arguable that the point (6.4). representing 5

successes in 6 trials, indicates higher values of p than the point (2,2). To

fix ideas, suppose that we observe a sequence of Bernoulli trials which

terminates at the point (6.4). In order to construct a lower confidence bound

on p, we need to specify the set A of boundary points above the data. There

are 26 = 64 possible definitions of A. It is easy to see that 32 of these

would lead to the trivial claim that 0 p 1. but the others produce .,

confidence bounds that make more sense. For example, the 3 possible orderings

mentioned above would lead to different statements of the form: R - P - 1. for

the same confidence coefficient.

3. ORDERING OF RANDOM VARIABLES

We now consider two different partial orderings of probability

distributions on the real line. A brief outline of their properties is given

below. Let Y and Z be random variables with distribution functions C and H.
-- l

respectively. Note that, if we define G- (u) = inf{y: G(y) u). for

0 < u < 1. then the distribution of Y can be described by writing Y = G- (U).

where U is uniformly distributed on [0.1).

Definition 1. We say that Y is stochastically less than Z and write Ys Z if
st

%5
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E(v(Y)) ( E(v(Z)) for every bounded increasing function v on R.

Proposition 1. Y g (=> G(t) H(t). t & R. Hence. if Y 9st Z. we can write

Y = G-I(U). Z = H-I(U), where U is uniformly distributed on [0.1]. For this

representation of the joint distribution, the inequality Y g Z always holds.

Suppose further that Y and Z have probability densities g and h. with

respect to a common o-finite measure p on I.

Definition 2. We say that Y is less than or equal to Z in the sense of

monotone likelihood ratio and write Y r Z if h(t)/g(t) is non-decreasing in

teR (excluding t such that g(t) = h(t) = 0).

Proposition 2. Y g z => Y st z. .

Proofs of the above results can be found in Lehmann's paper and there is a -0

clear exposition, for discrete random variables, in the paper by Whitt (1979).

This also introduces the notion of uniform conditional stochastic order

(u.c.s.o.), which is investigated more generally in Whitt (1980). For our

purposes, it will be enough to note one of the results from the last paper.

For distributions with probability densities on the real line. u.c.s.o. is

equivalent to m.l.r. in the following sense. Let B C R be a Borel set and 0

consider the probability distributions of YB and ZB obtained by conditioning Y

and Z. respectively, on the event B.

Proposition 3. YB st ZB for every event B <= Y r Z.

There is another way of seeing that ordering by m.l.r. is stronger than

stochastic ordering. Suppose that we have an ordered sequence of random I

variables YIY2."'. Yk and that they have probability densities g,.g2 . ...gk

% %:I! %% %0
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with respect to p. Suppose further that they are independent of one another

and consider whether the most likely ordering of their observed values is

Y1 Y2 Yk*

Proposition 4. (i) Let Y11 Y2..... Yk be independent random variables and suppose

that Y1  r Y2 r"' r Yk' Let (TTw 2 ..... wk) be any permutation of the

integers 1,2...,k. Then

P(Y1 Y2  
" " Yk) P(YI9 Y2..YT Y

1 2k T1 W2 wk

(ii) This property does not hold, in general, for k 3 independent random

variables such that Y1 st Y2 -st" "st Yk"

Proof. We shall establish Part (i) by showing that

gl(Yl)g2(Y2" .. gk(Ykl g-,l (Yl)g 2 (Y2" .. g wk (Ykl (6)

holds at every point of Ck = {(yly 2. .yk): Yl Y2 -  ". Yk) " The required

result will then follow by integrating over the set Ck.

Note first that gl(yl)g2(y2) g2 (yl)g 1(y2 ) if yl y2. so (8) holds for

k = 2. Now let k 3 and assume that

gl(Yl)g2(Y2"" ...gk-I(Yk-I) 2 gal(Yl )g°2 (y 2 ) " gak-l (y k - I  (9)

holds in Ck I . for any permutation a of 1.2 - k-1. If vk= k, then (8) is a

trivial consequence of (9). so we may assume that, for some j < k. rj= k and

V k( k. We define a in (9) by a= vi if I jE J. I g k-I, and a,= wk' It is now

a straightforward matter to deduce (8). by using the fact that, since y j_ Yk'

gk(Yk)  gk(Y )gwk (Yk)/gk (yj ) = gv (yJ)gk (yk)/g (y )"

The proof of Part (ii) is based on a counter-example. Let Y',Y2,Y' be
1' 2 3

independent and uniformly distributed on [-1.1]. Define Y1 -min(Y'.0). Y2= Y

Y3= max(Y.O). Proposition I can be used to show that Y, 9 st Y 2 st Y3' On

the other hand.

V ... . -*.-, * . % ..
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P(Y1  Y2 ] 3) =:' but P(Y2  Y Y3 ) = P(Y1  Y3  Y2 ) = 8"

It is easily shown that the result of Part (i) remains true for stochastic

ordering in the case k=2. However, it does not hold for k 4 and this can be S

demonstrated by extending the above example.

4. ORDERING OF STOPPED SEQUENCES

n
We now return to the random walk model described earlier, with Sn= I x.

1

n 1, where the steps xi are generated by independent observations from the

distribution defined by (3). We restrict attention to stopping times specified

by two sequences of numbers. Let - an b n o for n=l,2.... and let

N = min{n>l: Sn f (a n,b n)}. (10)

Clearly, N m = min(n 1: a = b ), if this is finite. If a < b for all n.
n n n n

we set m = and the stopping time N may be infinite. However. it is assumed

in such cases that N is finite with probability 1, for any value of the

parameter 6. This means that the stopping point (N.SN) always has a proper

distribution.

The stopping region associated with N consists of points (n,s) such that

1 n m and either s a or s b . This can be regarded as a totally
n n

ordered set.

Definition 3. Let (n.s) and (n',s') be points of the stopping region. We say

that (n'.s') is above (ns) and write (n'.s') (n.s) if one of the following

conditions holds:

(I) n'= n and s' s,

(ii) n'< n and s' b,.

(iii) n*> n and s 9 a.

For example, it is a straightforward matter to check that either

-. "° , I , , *., * ,. * *,' ., , , * , .-. * S.., S .' ' ". * ' '. " , .t . ' # '' " ," ,- , , r - ,, - ° • , - ., i -- .



(n',s') ) (n.s) or (n.s) 7 (n'.s'), for every pair of stopping points, and that
the relation 7 is transitive.

We are now in a position to prove the main result. Let

T(nUs,e) = Po((N,S) (n.s)). (11)

Theorem. Under the above conditions, the function -p is non-decreasing in 6:

q(n,s.O') p(n.s.O)

whenever 6'> 6. for any point (n.s) in the stopping region.

Proof. We shall couple together two realisations of the random walk,

corresponding to the parameter values 6 and 0'. It follows from (3) that the

likelihood ratio for a single observation x is exp{('-)x-(()-(6))} and

this is increasing in x if 6'> 0. Hence, we can associate random variables X

and X' with 6 and 6', respectively, such that X r X. Let F(x;O) be the

distribution function determined by (3). Then, according to Propositions 1 and

2. we can describe the two distributions by writing X = F-I (U-) and I

X= F-(U;O'), where U is uniformly distributed on [0.1]. Now let u1 .U2 '.... be %

independent observations from the uniform distribution and consider the

n n ,F1(urealisations generated by setting S n = I n 1 x F

, FS-l x wer xut  (. .) 1 1 '11

xi= F 1 (u ;0'). and hence x x i always holds. We must compare the stopping

points associated with 6 and 6'. Given the sequence (u1 ,U2 .... ), we can apply

(10) to determine points (N.SN) and (N',S ,), say. Then it follows from

Definition 3 and the fact that S' Sn. for all n 1. that (N',Sj,)7 (NSN).

Thus, we have generated the stopping points from independent uniform random

variables in such a way that the event [(N.SN))I (n.s)) is contained in the

event [(N',SI,)7 (n.s)]. The theorem follows immediately.

Ir



12 b

Remark. The above argument can also be used to show that, for any bounded

increasing function v defined on the stopping region, E(v(N,SN)) K E(v(N'.SN.))

If 6 ( 6'. Hence, the random point (N.SN) is stochastically increasing in 0. b

In the sense of Definition 1.

5. ILLUSTRATION

The monotonicity of the function f(n,s,6) established in the theorem is

useful in constructing confidence bounds, but It does not mean that such bounds

are optimal. The uniformly most accurate confidence bounds mentioned earlier

are obtained only if the random stopping point (NSN) is increasing with

respect to 6 in the stronger sense of m.l.r. This is exceptional: roughly

speaking, fixed samples lead to uniformly most accurate one-sided confidence

intervals, but random stopping times do not.

We can easily see why. by examining likelihood ratios for the exponential

model (3). After n observations, suppose we find that S n= s. The likelihood

ratio for parameter values 6 < 6' is exp{(G'-e)s-(+(O')-+())n}. This is -

increasing in s, so if the sample size is fixed in advance at n. the m.l.r.

property holds. Now suppose that (n,s) and (n',s') are points of the stopping

region with n'$ n. The second point yields a higher likelihood ratio if and

only if

('-6)

We could extend this comparison of points to produce an ordering relation on

the stopping region but, in general, the relation would depend on our choice of

parameter values, since #"(0) > 0 and the coefficient (+(0')- I())/(6'-6) is

not constant. In the case of independent Bernoulli trials, it is not difficult

to devise random stopping times in such a way that the m.l.r. property holds, "

but it is worth noting that in the example discussed in Section 2, only Rule 1

with a fixed sample size produces a stopping region that has the m.l.r.
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property.

Finally, consider a simple acceptance/rejection scheme based on a process

in continuous time. Let S(t)= $t+W(t) for t 0. where S(O)= 0 and W(t) is a

standard Wiener process. Suppose that S(t) is a summary of responses in [O.t)

to a new medical treatment and that positive values of the unknown parameter 0

represent a higher risk of serious adverse effects. Let b and m be fixed

positive numbers and let the decision procedure be specified as follows: stop

and reject the treatment as soon as S(t)= b if this occurs for some t < m;

accept the new treatment if S(t)< b for 0 t m. A detailed evaluation of

this procedure is given in Siegmund's book (1985): see Chapter 3. Here, the

aim is to illustrate some consequences of Propositions 3 and 4.

Since the boundary prevents any overshoot, the stopping region consists of

two lines in the (ts) plane. Strictly speaking, the theorem of Section 4 does

not cover processes in continuous time, but it is easy to verify that, for a

counter-clockwise ordering of the boundary, we have stochastic ordering of the

distributions of the terminal point with respect to 0. For two values 0 and 0'

of the drift parameter, the likelihood ratio at any boundary point (ts) is

exp{(e'-e)s - (e'2-e 2)t}. (12)

In cases of acceptance, t = m and this is increasing in s provided that 0'> 0.

Rejected cases occur on the line s = b. for t < m, and there the likelihood

ratio is increasing in the counter-clockwise direction (i.e. decreasing in t)

if and only if 18'1 > 101.

Consider the results of applying the scheme independently to k different

treatments and suppose the corresponding drift parameters are in the order:

01>02 '''>.k " Intuitively, it might seem that the most likely arrangement of

the corresponding terminal points is (tlsl) (t 2 ,s 2 ) ... (tk.Sk), using the

obvious extension of Definition 3. However, this may not be true. Proposition

4 applies if lell l621 ek6. but let us assume that this last condition

% %
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does not hold. We can argue conditionally, If all the treatments are accepted.

Because of the m.l.r. property on the line t = m. given acceptance, the most

likely arrangement is b sI  s2  ... sk . However. after rejection, the

observed arrangement of the final times could be quite misleading. Conditional

on rejection, we have the m.l.r. property based on 101. rather than 6. and the

possibility of false rejections (i.e. cases with 8i< 0) makes the situation

more complicated. The most likely arrangement, given rejection, need not be

the one with t1  t2 9 ... tk< m.

More generally, suppose we have a stopping region determined by two smooth

boundary curves: s = a(t) and s = b(t). The process (S(t)) is allowed to

continue so long as a(t)( S(t)( b(t). We can see by using (12) that on the

upper boundary curve, the likelihood ratio is

exp((O'-e)(b(t)- %(e+o' )t))

and this is increasing in the counter-clockwise direction if 0'>6 and if the

derivative b'(t) < 56(9+0'). In the special case where b'(t)= 0. we noted that

negative values of the drift led to complications in relating the order of

parameter values to the order of stopping points on the boundary. Here we can

say roughly that the idea of a counter-clockwise ordering of boundary points

remains valid, conditional on stopping near the point (t.b(t)). provided that . e

we are concerned with values of the drift leading towards the boundary (i.e.

6 > b'(t)). Similar remarks apply to the lower boundary for values of the

drift 9 < a'(t). It seems that we should try to design stopping rules so that

there is always a high probability that the random process will reach a

stopping point where the expected increments lead towards the boundary, rather

than away from it.

%* *6 %, ~ *S ~ % % *% I '
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